<u>Meiosis (Outline)</u>

- 1. Meiosis involves **two divisions** of the cell & nucleus
- 2. <u>Homologous chromosomes pair up</u> during 1st division and swap portions of chromatids (<u>crossing-over</u>)
- 3. <u>Homologous chromosomes separate</u> during the 1st division.
- 4. **<u>Chromatids separate</u>** during the 2^{nd} division.
- 5. One diploid parent cell forms **<u>four haploid gametes</u>** (sex cells)

4 gametes (sex cells) which are haploid and genetically different

Meiosis: 1st Division

Interphase

- DNA is replicated
- Each chromosome duplicates to become 2 sister chromatids, but they are loosely coiled, so not visible yet.

Prophase I

- Homologous chromosomes pair up.
- They swap portions of genetic information.

Metaphase I

- Homologous Chromosomes move to the middle of the cell
- They line up on the equator across from each other.

Anaphase I

Spindle fibres contract and pull the chromosome pairs apart.

Telophase I

- Chromosomes arrive at the poles of the cell
- The cell divides into two

Meiosis: 2nd Division

Prophase II

• Chromosomes relax, then condense again

Metaphase II

• Sister chromatides line up at the middle of the cell.

Anaphase II

• centromeres split, & chromatids are pulled apart

Telophase II

- Chromosomes arrive at the poles of each cell
- Each cell divides into two
- Four sex cells (gametes) are made